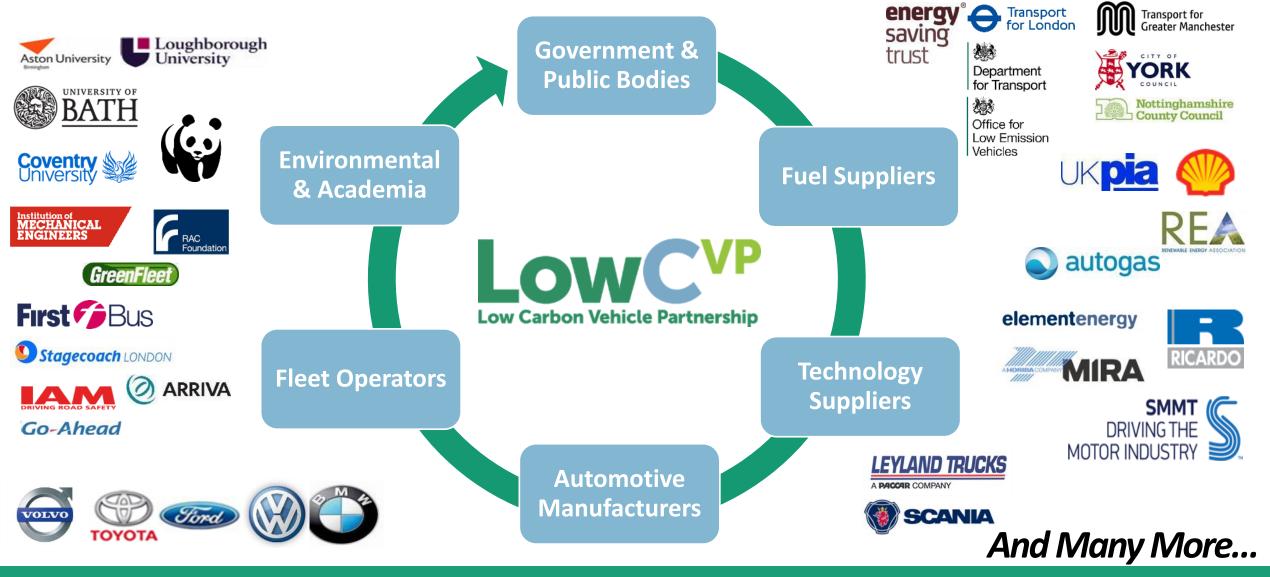
Delivering EV charging infrastructure

ADEPT Conference

7 October 2020



Jonathan Murray Director of Policy & Operations

LowCVP: A unique public-private membership organisation,

building evidence and creating robust policies and innovation in the UK

- The vast majority of EVs are either charged at home or at a fleet depot.
 - 25% of cars parked on street over night
- Public Charge Points (PCP):
 - 34,363 charge point connectors across
 12,444 locations across the UK.
 - PCPs provide invaluable additional charging to support home and business charging, and the opportunity to extend journey distances in EV mode.
- Depot-based charging:
 - Bus fleets
 - Local authority fleets
 - Delivery fleets

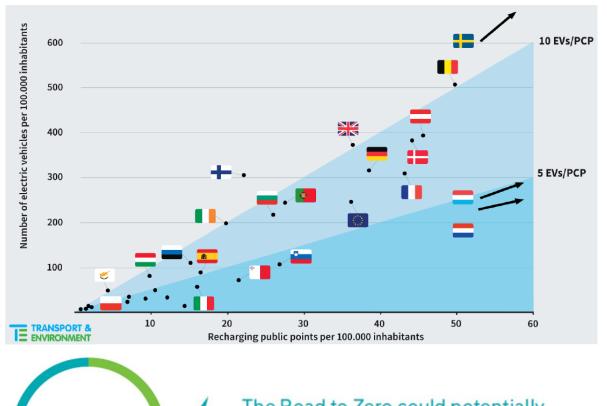
Charge point type	Power transfer		Typical charging time	
Slow	≤3kW	Single phase	8-12 hrs	
	≤7kW	Single phase	3-4 hrs	
Fast	≤22kW	Three phase	1-2 hrs	
Rapid	≤43kW	Three phase	80% in 20-30 mins	
	≤50kW	DC		
Super-rapid	>43kW	Three phase	<20-30 mins	
	>50kW	DC		

User cases & infrastructure

User Category	Vehicle Type	From or near home or at depot (Slow charge)	While 'grazing' of at workplace (Slow/Fast/Rapid)	'On the go' or in transit (Rapid/Fast)
Drivete Care	BEV	Dogularly	Occesionally	Occasionally
Private Cars	te Cars Regularly C PHEV		Occasionally	Occasionally to never
Shared Vehicles	BEV	Pogularly to daily	Occasionally to Regularly	Regularly
(Car Clubs)	PHEV	Regularly to daily		
Taxi / Private Hire	BEV/PHEV	Nightly	Rarely or never	Regularly to daily
Privately Owned LGVs	BEV	Dogularly to Nightly	Occasionally to Regularly	Regularly
	PHEV	Regularly to Nightly		Occasionally
Company Fleet LGVs	BEV	Dogularly to Nightly	Occasionally to Regularly	Occasionally to daily
PHEV Regularly to Nightly	Rarely to never	Occasionally		

Source: London Electric Vehicle Delivery Plan

Issue: delivering infrastructure required from existing electricity network



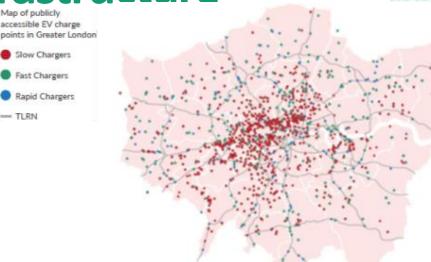
Electrification of transport will increase electricity consumption significantly.

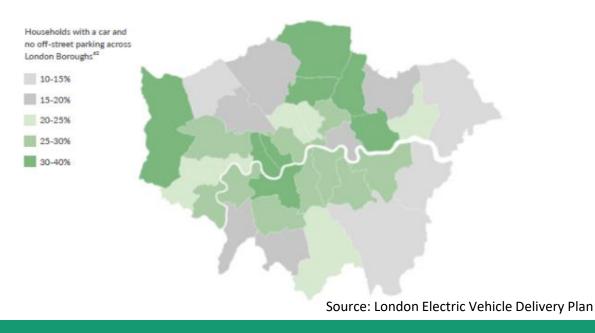
- Smart charging
- Best utilisation of the network
- EU currently recommends a ratio of 10 EVs to each Public Charge Point (PCP):
 - UK currently 10 EVs/PCP
 - UK forecast to need 500,000 PCPs by 2030

Importance of PCPs influenced by population density and access to off-street parking:

- Sweden > 13 EVs/PCP 23 pop/km²
- Netherlands < 4 EVs/PCP 521 pop/km²

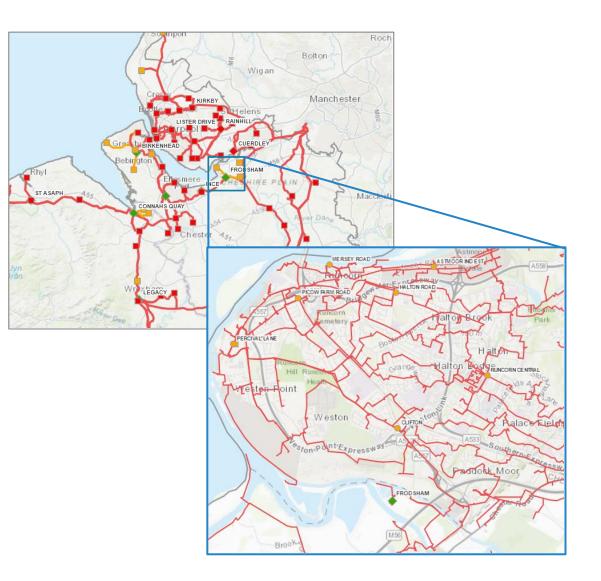
The Road to Zero could potentially increase today's electricity consumption by about 30% by 2050


30%


Understanding demand for EV infrastructure

Charging requirements will differ between use cases:

- Private cars
- Shared mobility e.g. Car Clubs
- Taxis, Private Hire
- Community transport
- Buses
- Private vans
- Delivery fleets
- Charging requirements are likely to change over time:
 - Mass market likely to be more dependent on public charging network
 - Urban mobility modal shift
 - Increased demand for home delivery
- Transport electricity consumption will need to be met by the electricity network both temporally and spatially.



Understanding supply – new tools

The GB electricity network is undergoing a transformation:

- Renewable and dispersed power generation
- Decarbonisation of transport and heat
- Smart grid TOU tariffs
- New regulatory regime RIIO2
- Current network has significant constraints in managing peak load:
 - Ability and cost of connecting to grid can be time consuming and costly.
 - Distribution Network Operators producing new tools to assist.

Getting public and private charge points connected

Involve the distribution network operator, the supplier and a qualified installation company early.

When? Who? Why?

The following steps should be followed when considering installing a charge point:

- Identify some candidate locations
- Decide on the number and type of charge point(s)
- Make initial contact with your DNO to submit an enquiry and discuss network capacity at the locations concerned
- Appoint an electrical contractor for the charge point installation
- Apply for an electrical network connection from your DNO
- Submit a map where the preferred location is marked with a circle rather than a specific point
- · For multiple applications, prioritize the locations in rank order (most favoured to least favoured) if possible
- Provide your DNO with the technical data sheet for the charge point types you are planning to install
- · Receive, review and accept the DNO design and quotation received
- Appoint an electricity supplier who will bill for the electrical energy used
- Your supplier will appoint a meter operator to install a meter for the charge point
- Agree start and end dates for DNO works
- Energise your charge point(s)
- · Operation and maintenance

Small (up to 70kVA)	Medium (200kVA – 1,000kVA)	Large (above 1,000kVA)			
Number of charge points					
1-3 fast or 1 rapid charge	More than 3 fast or more than 1 rapid charge	Multiple fast/rapid charge points			
Approximate connection time					
8-12 weeks	8-12 weeks	6 months +			
Approximate connection cost					
£1,000 - £3,000	£4,500 - £75,000	£60,000 - £2 million			
Other considerations that may affect the cost					
Street work costs	Street work costs Legal costs for easement and wayleaves	Street work costs Legal costs for easement and wayleaves Planning permission and space for a substation			

Source: UKEVSE

Low Carbon Vehicle Partnership

Planning for the future – local area energy plans

- To meet Net Zero emissions by 2050 will need a radical transformation of local energy systems.
- This will key to transport as well as other sectors: heat, local power generation, energy storage, development.
- A strategic 'Whole System' approach to Local Area Energy Planning has been proven to be beneficial and cost effective.
- Local authorities and network operators will be key stakeholders in developing.

Summary

- There will need to be a significant increase in public charge points to support the growth in EVs.
- A range of residential on-street, work and on route charge points will be needed for the range of users.
- The electricity network could be a constraint on the deployment of public and private charge points. Consult your DNO early or use capacity maps.
- Transport and energy planning should be brought together at a local and regional level.

Useful sources

- Energising our electric transition, EV Energy Taskforce
- Decarbonising transport Accelerating the uptake of electric vehicles, LGA
- London Electric Vehicle Infrastructure Delivery Plan , GLA
- Recharge EU: How many charge points will the Europe and its member states need in the 2020s, T&E
- A guide on electric vehicle charging and DNO engagement for local authorities, UKEVSE & WPD
- Local Area Energy Planning: Guidance for local authorities and energy providers, ES Catapult

Thank you. Any questions?

Jonathan Murray

Policy & Operations Director

Jonathan.murray@lowcvp.org.uk

Interested in joining the Partnership?

Carolyn Webb Membership Coordinator Carolyn.webb@lowcvp.org.uk