Future Highways Research Group

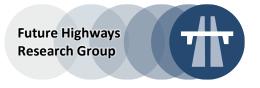
Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Future Highways Research Group

Q3, 2021 Waypoint Meeting


ADEPT / Proving Research Partnership

All presentation materials are the sole actual and intellectual property of Proving Services Limited.

Agenda

- Welcome & Introductions (Hannah Bartram)
- ADEPT News (Hannah Bartram, COO, ADEPT)
- Sector News (Dominic Browne, Editor, Highways Magazine)
- Current Research Programme
 - Scope 1 & 2 Guidance (Update, Helen Bailey)
 - Scope 3 Guidance, Planned Launch (Q1, 2022)
- Future Highways: The Wider Policy Context for De-Carbonisation
 - Prof. Peter Jones, Professor of Transport and Sustainable Development
 - Dept of Civil, Environmental & Geomatic Engineering, University College London
- Designing Out Carbon: A Practitioner's Approach
 - Victoria Walsh, Highway Systems Manager, Devon County Council
- Comfort Break

Agenda (Continued...)

- Net Zero Carbon Materials & Processes (Scope 3 Preparation)
 - Owen Jenkins, Director of Growth and Economy, Oxfordshire County Council
 - David Ogden, Operations Director UK Contracting, Colas Limited
- StreetCare Operating Model
 - Jon Munslow, Asset and Infrastructure Group Manager, South Gloucestershire Council
- A New Approach to Prioritising Local Authority Skid Resistance
 - Dr Helen Viner, Director, Enodamus Limited
 - Kully Boden, Interim Head of Service, Derby City Council
- Strategic Innovations & Options Portfolio Development
 - Simon Wilson, Research Programme Director, Proving
- Benchmarking Club 2020 Update
 - Andy Perrin, Director, Proving
- A.O.B. & Close

Future Highways Research Group

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Highways PART OF TRANSPORT NETWORK

ADEPT, Sector News & Individual Authority Updates

Hannah Bartram, Dominic Browne & FHRG Members

Future Highways Research Group

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Research Programme Update

Scope 1 & 2 Guidance Update & Scope 3 Preparation

- Identify what has currently been adopted and progress among members.
- Define clear boundaries for the activities to be included.
- Define the period in which data will be collected (reporting cycle).
- Understanding key environmental impacts and the associated emissions.
- Define uniform measurement techniques for the identified impacts.
- Agree carbon footprint conversion assumptions.
- Create benchmarkable standards.
- Create an assessment framework.
- Any thoughts, feedback on use of carbon standards/tools?

Where we are

✓ Working and steering groups formed.

✓ FHRG peer group formed.

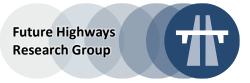
✓ Literature review undertaken, covering:

- ✓ Key legislation.
- ✓ Mandatory reporting.
- ✓ Mapping of current standards and guidance.
- ✓ Carbon accounting tools and conversion factors.
- ✓ Business reporting, procurement implications and opportunities.

✓ Questionnaire developed - coming to an inbox near you Friday 16th July.

- 1. The devil is in the detail.
- 2. Please take time to complete all questions and provide as much detail as possible
- 3. Those completing this questionnaire will typically come from highways service provision, sustainability/environmental function and or carbon reduction teams.
- 4. The questionnaire is written to follow PAS 2080 and will focus on:
 - i. General information standards, management systems, policy, procedures and targets
 - ii. Baseline information year and boundaries applied (i.e. scope of activities)
 - iii. Scope 1 detail of current activities included, monitoring and measurement techniques
 - iv. Scope 2 detail of current activities included, monitoring and measurement techniques
 - v. Tools how do you calculate your footprint, tools and conversion factors used
- 5. Two weeks to complete, return 30th July.

General questions


No	Question	Response
1	Local Authority name	
2	Local Authority representative	
3	Position held within local authority	
4	Have you declared a climate emergency? If yes, what year?	
5	Have you a net zero target? If yes, what year?	
6	Have you a calculated carbon footprint? Yes/No	
7	What standards do you work to (you do not need to be certified)? Please tick all that apply:	ISO 14001
		ISO 50001
		PAS2050
		PAS 2080
		Other (please state)

Scope 1 questions

No	Question	Response
27	If you monitor Fuel combustion (boilers for heating buildings, gas furnaces and gas-fired combined heat and power (CHP) plants. The most common fuels are natural gas, liquified petroleum gas (LPG), gas oil (aka red diesel) and burning oil (aka kerosene)). Please state what is included and provide details of monitoring and measurement.	
28	If you monitor Process emissions - (emissions release into the atmosphere during industrial processes, for example the production of carbon dioxide (CO ₂) as part of cement manufacturing). Please state what is included in your carbon footprint and provide details of monitoring and measurement.	
29	If you monitor Fugitive emissions - (Fugitive emissions are leaks of greenhouse gases, for example from refrigeration and air- conditioning units. Refrigerant gases are generally extremely potent greenhouse gases, some of which are thousands of times more damaging than carbon dioxide (CO ₂)). Please state what is included in your carbon footprint and provide details of monitoring and measurement.	
30	If you monitor Company vehicles - (All vehicles owned or leased by an organisation that burn fuels producing greenhouse gases fall into Scope 1. Typically, these will be cars, vans, trucks, and motorcycles powered by petrol or diesel engines. However, transport is changing. Alternative fuels, such as liquid petroleum gas (LPG) and liquefied natural gas (LNG) are being adopted, as are the biofuels, biodiesel, and	

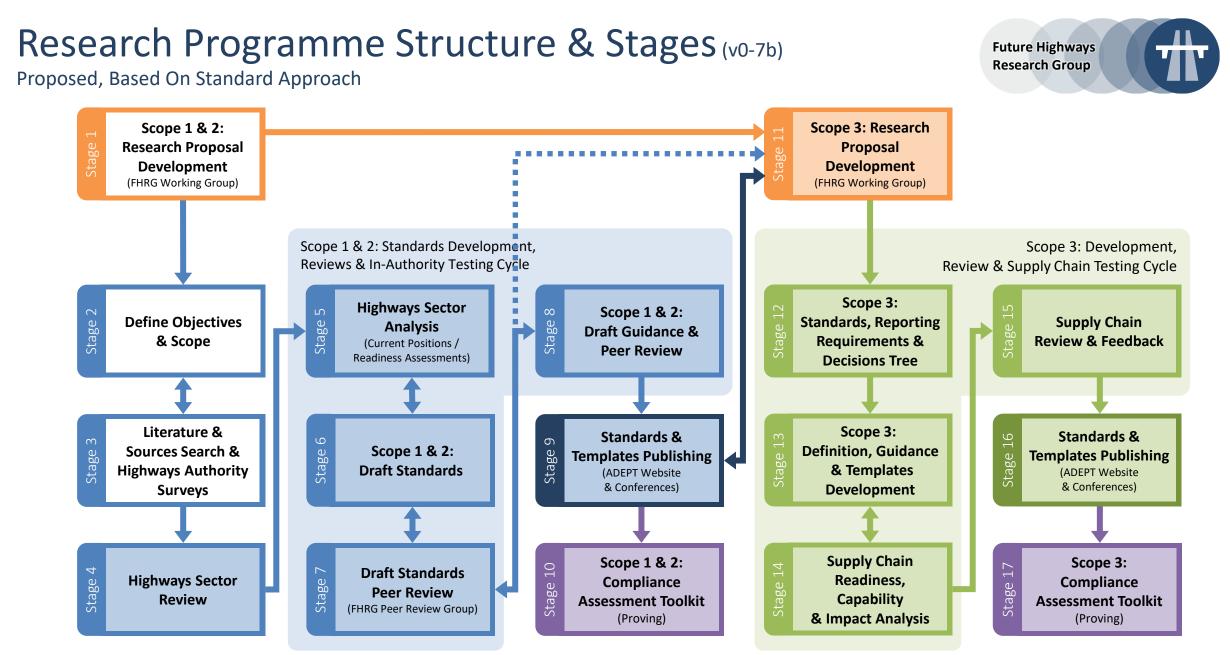
Scope 2 questions

No	Question	Response
32	Do you record any scope 2 activities? (Yes/No)	
33	Please record all your activities from scope 2 included in your carbon footprint.	
	Description of activity	Monitoring Yes/No/Partial

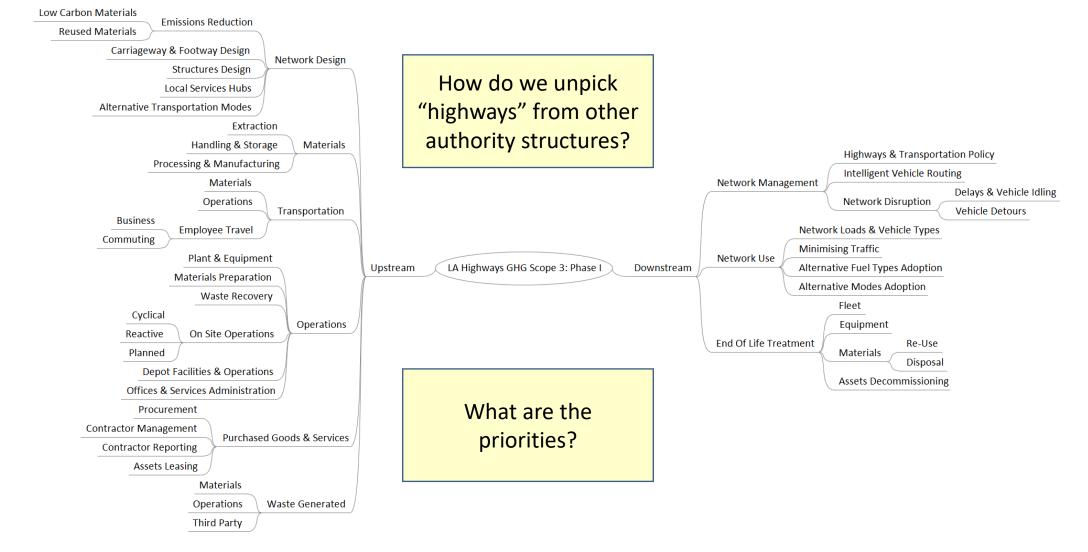
No	Question	Response	
34	Please record all activities <u>excluded</u> from scope 2 from your carbon footprint?		
Description of activity			

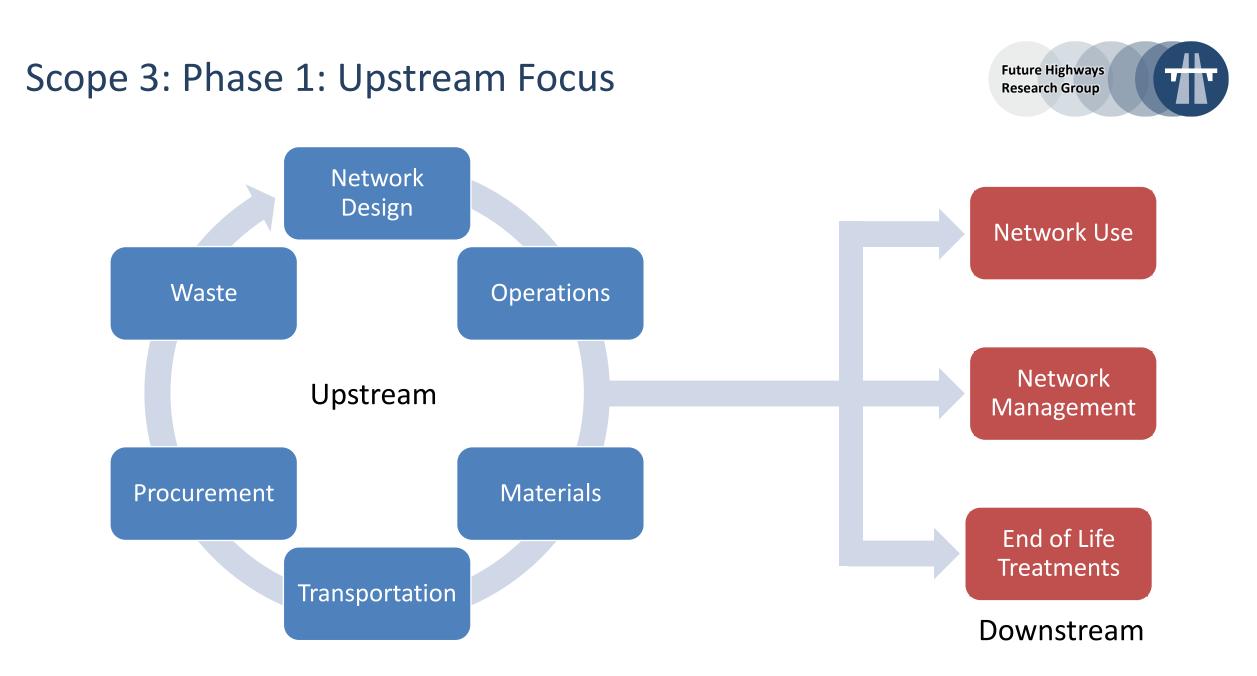
Future Highways Research Group

Decision Equipped.


proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport


Scope 3: Guidance Development


Next Project Stage

Scope 3: Highways Sector Analysis & Prioritisation It's Complicated

Home

Future Highways Research Group

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Future Highways: The Wider Policy Context for Decarbonisation

Prof. Peter Jones, Centre for Transport Studies, University College London

- Prof. Peter Jones, Centre for Transport Studies, University College London
- Background
 - Peter is a member of the Independent Transport Commission, the DfT's Science Advisory Council and co-chair of its Joint Analysis Development Panel. He is a member of the City of London Transport Strategy Board, the South-East Wales Transport Commission, the Dubai Council for Future Transportation, the Hong Kong ERP Advisory Panel and the CIHT Urban Design Panel.
- Aligns with our research programme:
 - Scope 1, 2 & 3: Highways Sector Guidance Development
 - Zero Carbon Research Programme
 - Future Highways Infrastructure

Context

- Decarbonisaton is becoming an increasing priority across the economy, with particular challenges for transport
- Technological advances are helping in many areas of supply and demand, but the general view is that this will not be enough
- It is important to avoid a repeat of the diesel debacle: we must be sure that carbon reduction does not run counter to achieving other key policy goals (air quality, vision zero, levelling up) and that we exploit synergies, wherever possible.
- This presentation focuses on urban policy development and deliver, drawing on recent studies undertaken in CTS at UCL.

Topics

- Re-purposing existing tools
- Policy framing: changing societal priorities and challenges
- Urban roadspace allocation
- Broadening appraisal

RE-PURPOSING EXISTING TOOLS

Adapting existing tools: e.g. traffic signals

Initially used to safely manage conflicting movements, traffic signals can contribute to many policy objectives, if programmed to do so:

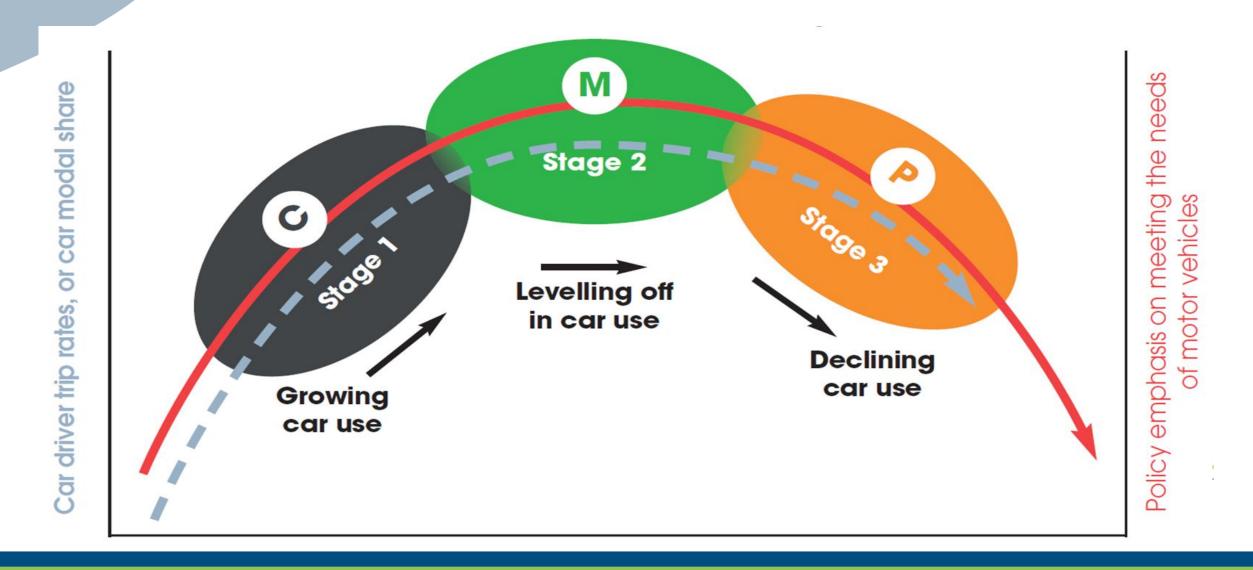
- Minimising fuel consumption
- Increasing traffic capacity at junctions (SCOOT)
- Metering traffic flow (Zurich)
- Prioritising certain modes
- Relocating queues (e.g. away from poor air quality areas)
- Reducing day-to-day variability in travel times

POLICY FRAMING

Policy Perspectives Shape Cities

Μ

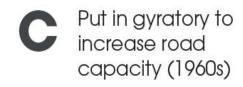
- Road building
- Car parking
- Lower density
- Decentralisation


Sustainable mobility city

- Public transport
- Cycle networks
- Roadspace reallocation

City of places

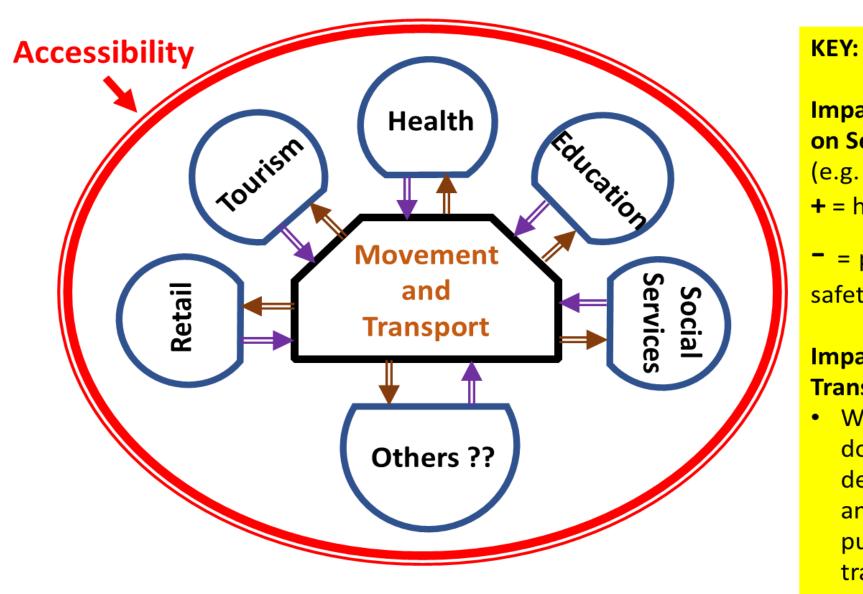
- Public realm
- Street activities
- Traffic restraint
- ToD/mixed use developments


A U-shaped Trajectory of Car Use Intensity

Contrast in policy measures: C -> P

The pictures show how this area of London has been transformed from a large traffic roundabout into a vibrant public space at the heart of the community, due to a shift in policy perspectives and corresponding priorities

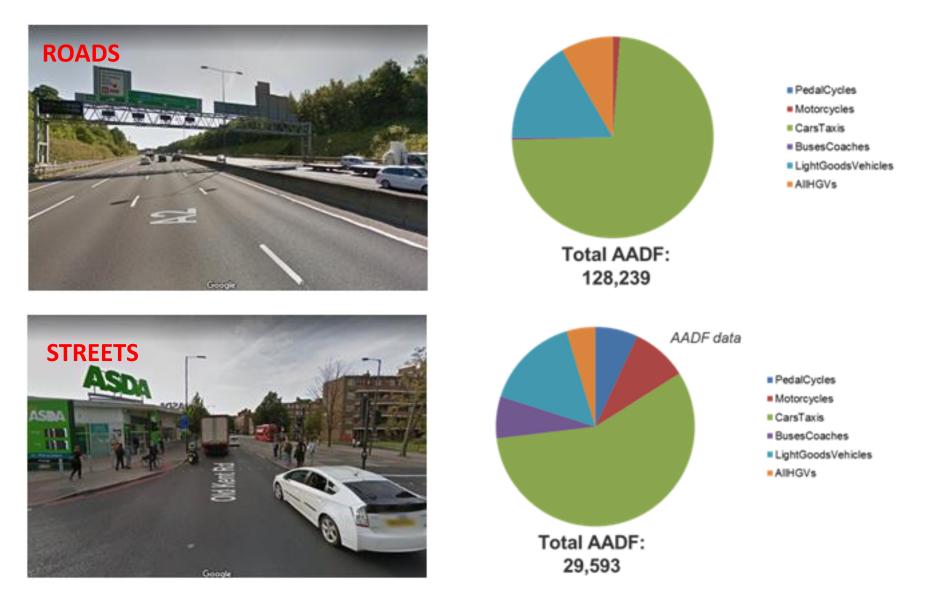
London, Aldgate Square:



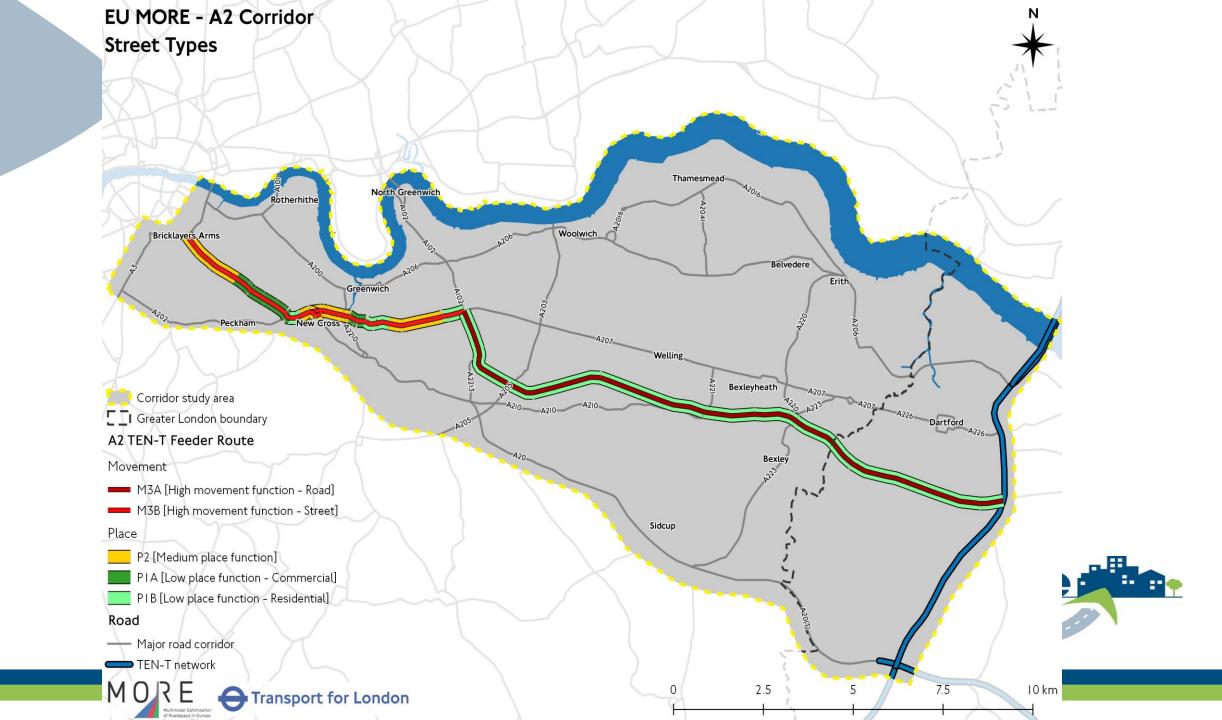
Interdependencies between Sectors

Impact of Transport on Sector: => (e.g. Health) + = healthy travel - = pollution, safety **Impact of Sector on** Transport: => • What demands do service delivery models

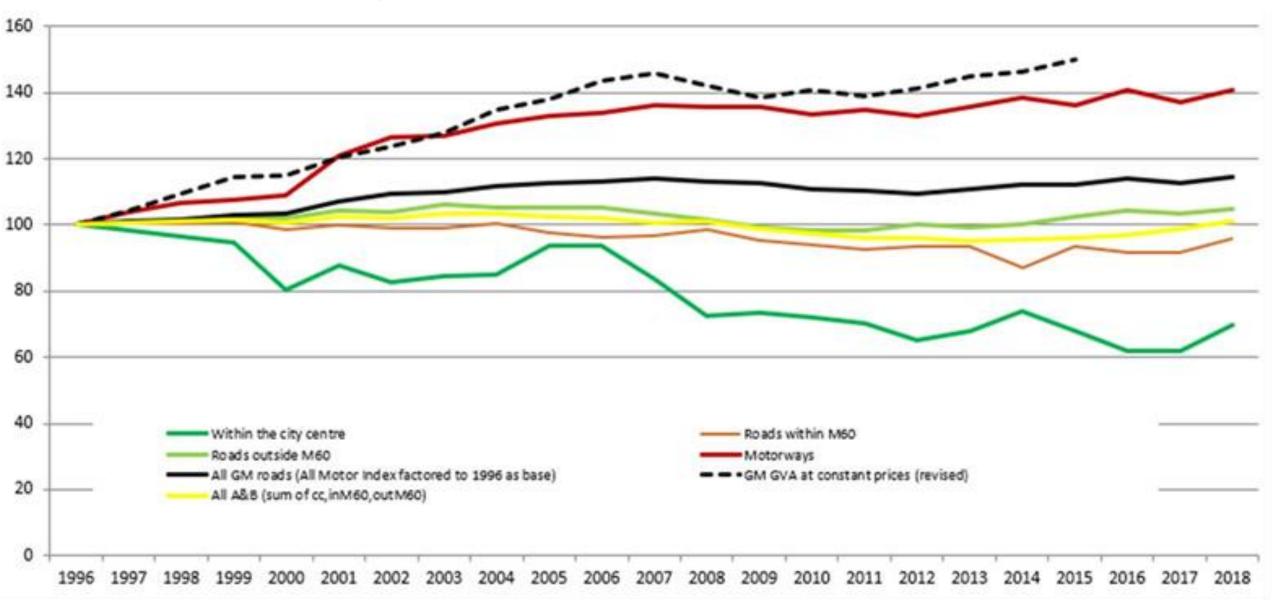
> and investments put on transport?


Generic Service Delivery Options

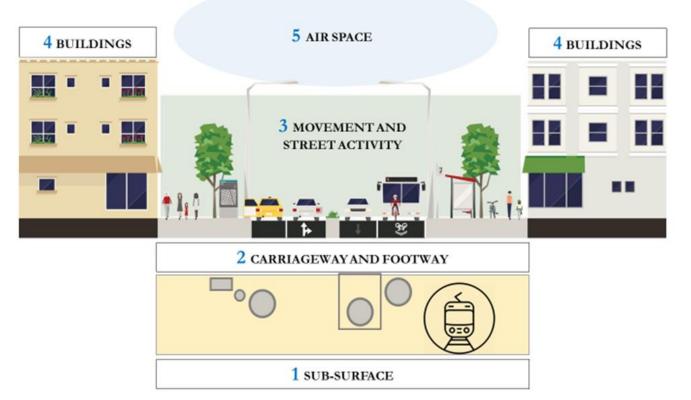
Form of delivery	Details	Consequences
Fixed Physical Facilities	Trade-offs: Numbers vs Size	Varying size of catchment areas (trip lengths) and modal options
Mobile facilities	Neighbourhood provision	Access on foot, but limited temporal availability
Provision to people's homes	Goods deliveries	Ordered by occupier or professional agency
	Personal services	Providing forms of care
Provision in-home	Physically	Purchase of equipment
	Digitally	Internet + receiver


ROADSPACE MANAGEMENT

Urban Feeder Routes: Mix of 'Roads' and 'Streets'



TfL London-wide Street Classification


Conflicting Traffic Trends and Policy Aims

Source: TfGM

Street as an (CO₂) 'Eco-system'

 Looking at street space allocation holistically, from building to building – not by each use separately – as a comprehensive ecosystem

- Being sufficiently imaginative in considering options for the allocation of urban street space.....
- Taking account of wider considerations (e.g. future of the high street)

Pro-active no reactive regulation

- Current approach: regulate new mode as it becomes 'established' always 'on the back foot'
- Suggested approach: pro-active generic regulation of activities allowed on different parts of the street e.g.:
 - Footway: non-motorised plus electric modes; maximum speed of 8kph (??), audible warning if wheel-based; no lights or protective gear
 - 'Cycle' lane: Wheeled vehicles (motorised and non-motorised) between 8kph and 30kph (??); night time lighting, effective brakes; protective gear recommended; insurance for motorised vehicles
 - Carriageway: All motor vehicles capable of travelling at over 30kph; night lights and protective gear required, effective brakes, plus license, identification and insurance

EXPANDING APPRAISAL

Measures of 'Success' Associated with Each Perspective

C: car-based

- Average network speeds
- Day-to-day variability
- Vehicle congestion
- Car parking availability
- Road traffic accidents
- Noise
- Air pollution

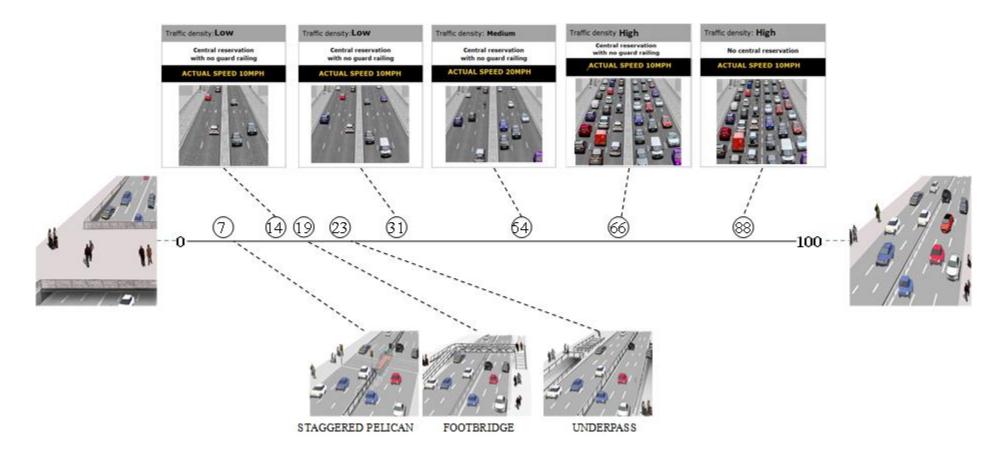
M: SUM-based

- PT frequency and reliability
- Access to bus stops and stations
- Safety and security
- Seamless travel
- PT modal split
- Walking/cycling modal shares
- Door-to-door travel times by mode

P: place-based

- Time use in transport modes
- Intensity of street activities
- Time spent in local area
- Value of high quality public space
- Health of the population
- Social interaction
- Social equity and inclusion
- Community severance

KEY: There are not yet well established means for measuring and valuing these benefits


Influence of main road traffic on reported well-being

845 respondents in 4 areas:2 in London,1 in Birmingham,1 in Southend

New indicator: severance caused by different types of roads

Disutility of crossing in relation to disutility of not making the trip (scaled to 100 – based on SP1 and SP2)

Provisional findings

Indicative values – subject to revision

Potential intervention	Value per trip
$6 \rightarrow 4$ lanes	£1.39
$4 \rightarrow 2$ lanes	£1.11
Add central reservation	£1.12
High \rightarrow medium traffic density	£0.94
Medium \rightarrow low traffic density	£0.83
Speed below 30mph	£0.49
Footbridge \rightarrow straight pelican	£0.11
Underpass \rightarrow straight pelican	£0.51

Thank you!

peter.jones@ucl.ac.uk

www.create-mobility.eu www.roadspace.eu www.sump-plus.eu

Future Highways Research Group

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Designing Out Carbon: A Practitioner's Approach

Victoria Walsh, Highway Systems Manager, Devon County Council

Collaboration & Knowledge Sharing

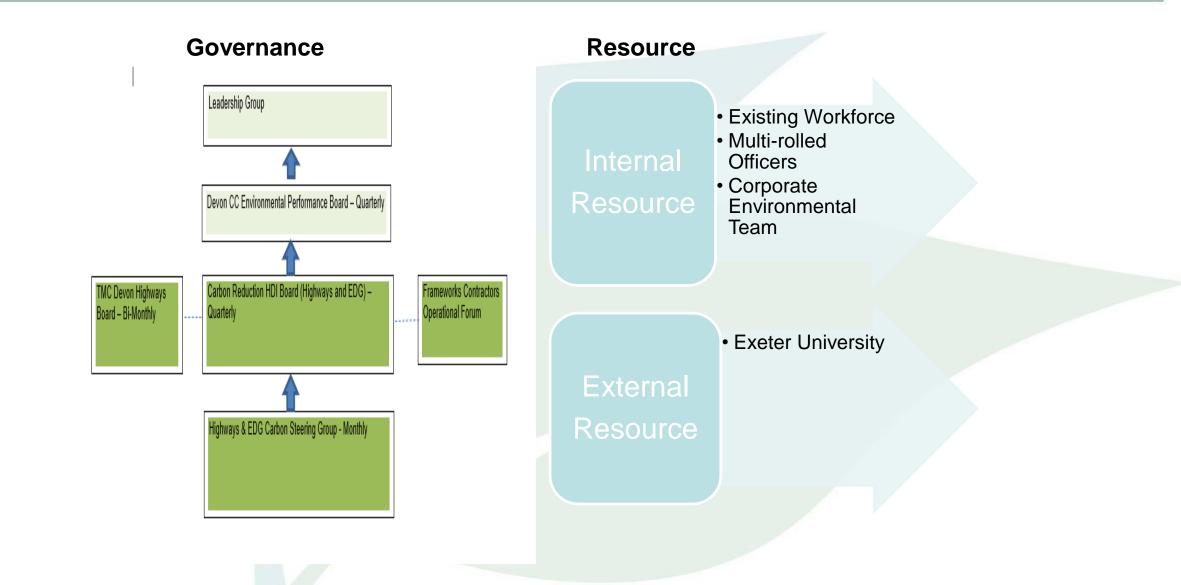
- Victoria Walsh, Highway Systems Manager, Devon County Council
- Background
 - Devon County Council are recognised as developing a thoughtful and robust approach to "designing out carbon". Victoria is part of the project team leading on this work and is actively exploring a framework for the analysis of whole life costs for CO2.
- Aligns with our research programme:
 - Whole Life Carbon Accounting (ECI+)
 - Scope 1, 2 & 3: Highways Sector Guidance Development
 - Zero Carbon Research Programme

Carbon Reduction (Construction Works) Project

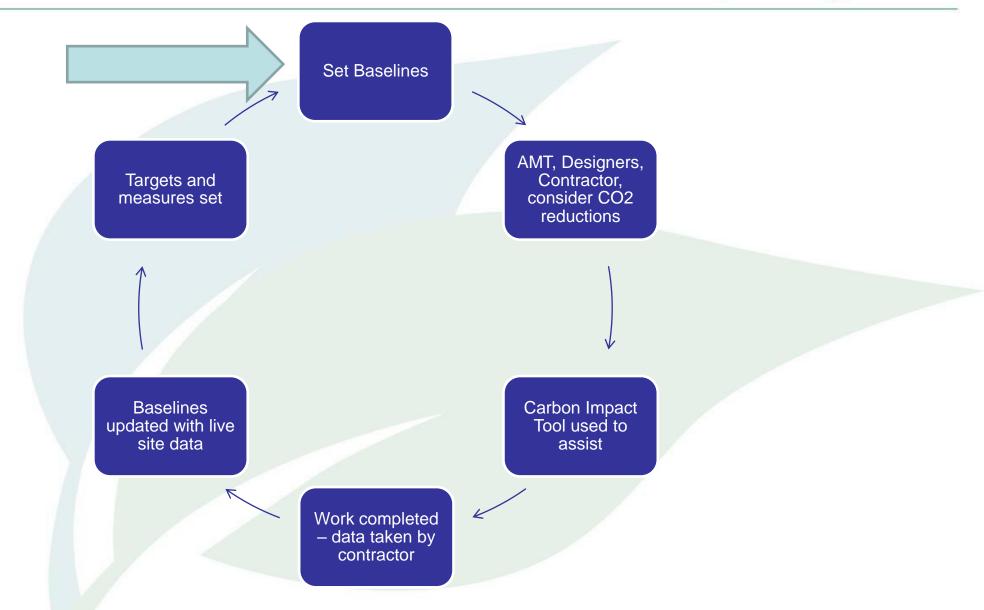
Victoria Walsh, Highway Systems Manager

Step 1 – ToR Main Objective

To investigate, consider and embed new ways of working that help reduce the carbon output when designing and commissioning construction works for new roads and highway maintenance operations.

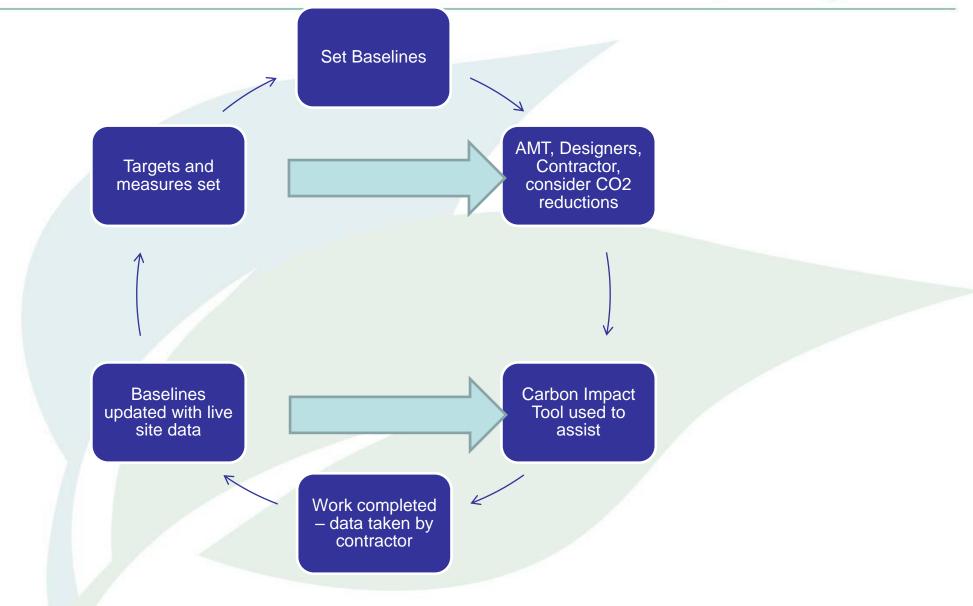

Carbon emissions calculations are to take a **'whole life costing of CO2**' approach – from sourcing primary materials through to their disposal at the end of a project's life. Early decision reached: To calculate on a set volume basis

Step 1 - ToR Areas of Focus



Business Process Model

High Priority Matrix



Activity	Material	Waste	Fuel	Sustainability of Works	Volume over Year	Total Carbon Score
Potholes					High	Score
(50 Repairs)						
Rigid Road					Low	
Maintenance						
Machine Patch					Low	
Warm Mix						
(Patch size of						
60msg)						
Resurfacing Warm					Low	
Mix - Overlay						
Resurfacing Warm					Low	
mix- Inlay						
Machine and Hand					High	
Laid					-	
Patching/Resurfacing						
AC, HRA, SMA						
(Depth a variable						
factor)						
Planned Drainage					Medium	
Works						
(If plastic used)						
Injection Patching					High	
Footway Works					Medium	
(Bituminous footway						
patch – 10m section)						
Joint Sealant Works					Low	
Gully Cleaning					High	
(100 gullies)					-	
Signs (Replacement)					Low	
Lines					Low	
(Centre lines 20 m &						
cost of 10 junction						
markings in same						
parish)						
Slurry Sealing					Medium	
Micro Asphalt					Medium	
Surface Dressing					High	
Street Lighting						
Traffic Signals						
PROW/Country						
Parks						

- Engaged with our contractors
- ✓ Used historic site data
 - Tried not to over complicated –
 - understand assumptions
- You may need experts
 We are working with
 - Exeter University
- Collaborate and set an achievable pace

Business Process Model

Carbon Impact Designer Tool

Notes

Notes

DCC suggested range 40 - 200 miles; assu

DCC suggested 20 miles regular, 140 miles

This is applied to all plant transport as on

When used in calcualtions (i.e. when fuel

Input Values

Cell Colour Coding

White cell should not be edited	Someti
Yellow cell user entry	Change
Orange cell optional override	Set val
Calculation output cells	
	-

Sometimes these values are dynamic if taken from other input cells Change these values depending on the scheme Set value to 0 if no override

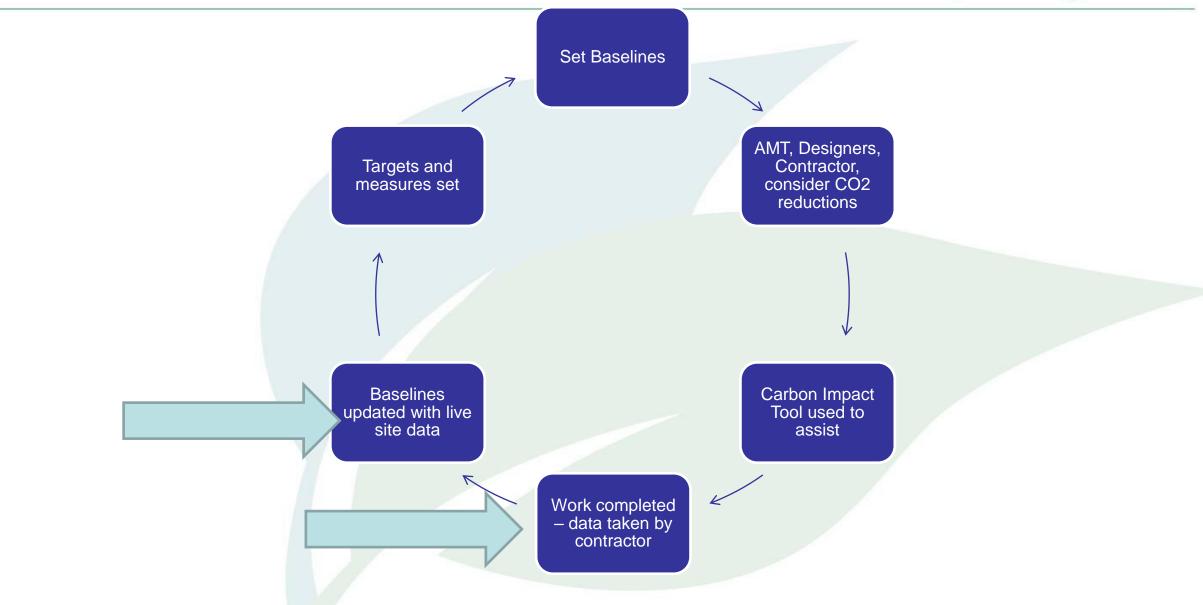
Lifecycle Inputs

Item	Value		
Year of job	2021		
Lifecycle period to consider	20	years	

General Distances within UK

ltem	Value	Units
Default material supply distance	60	miles
Waste disposal distance	60	miles
Plant travel distance	20	miles
Operative travel distance	50	miles

Supply Chain Description for Imported Materials (optional)


Note: Enter information here about supply chains from abroad - these can then be assigned to specific materials later. If there are seve

Item Unique Name for Route	Value Units Distance travelled abroad land (miles)		Notes Distance travelled sea crossing (miles)	Distance travelled in UK land (miles)
Overwrite this e.g. "China"	Cargo Ship: RoRo-Ferry	300	(Times)	Innes
	Not Applicable			

- Focused on 'designing out carbon'
- Considers the whole life costs
 of CO2 emissions
- Includes the 'cost of carbon' and £

Business Process Model

Standard Returns for Live Site Data

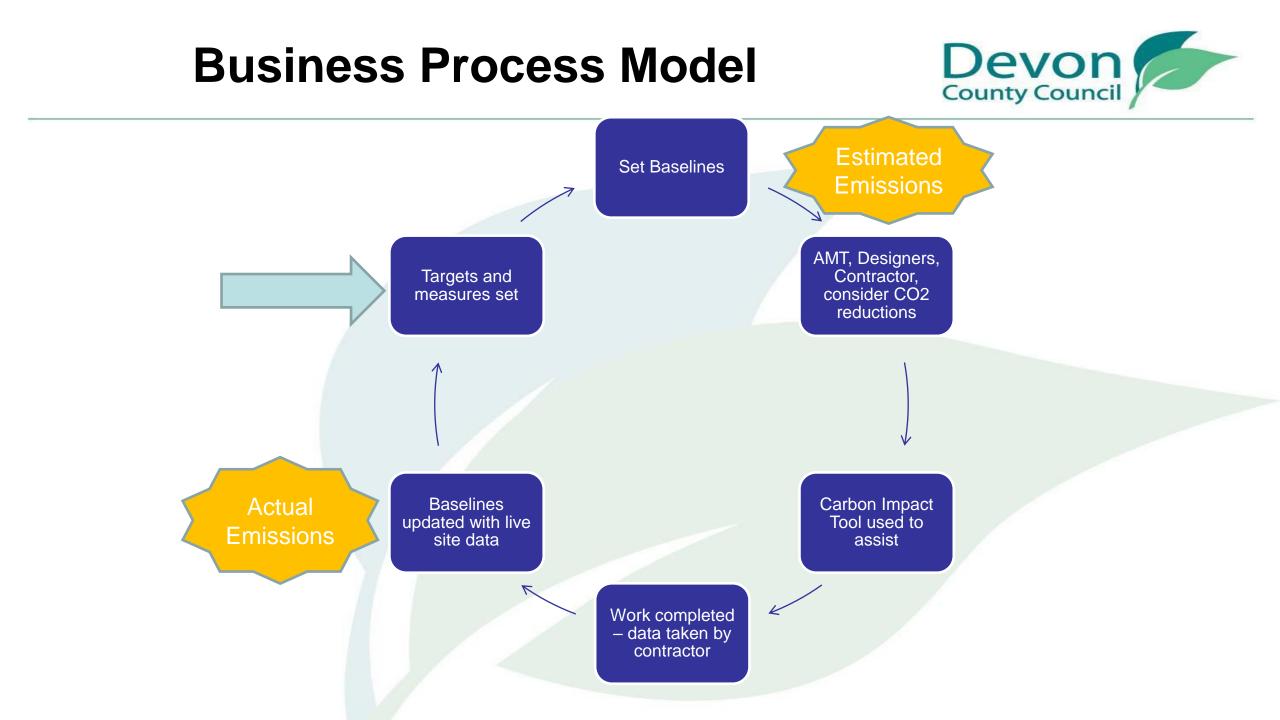
Carbon Data Return Form

General Information - Return at end of job only

ltem	Value	Units	Notes
Scheme Location		Text	Write the location of the scheme
Works Order Number		Text	Enter the works order number
Date of Works		Date	Enter the completion date of the scheme
Type of Works		Text	Enter a short description of the works
Extent of works		Text	Enter the extent of the works e.g. for surface treatements the area in

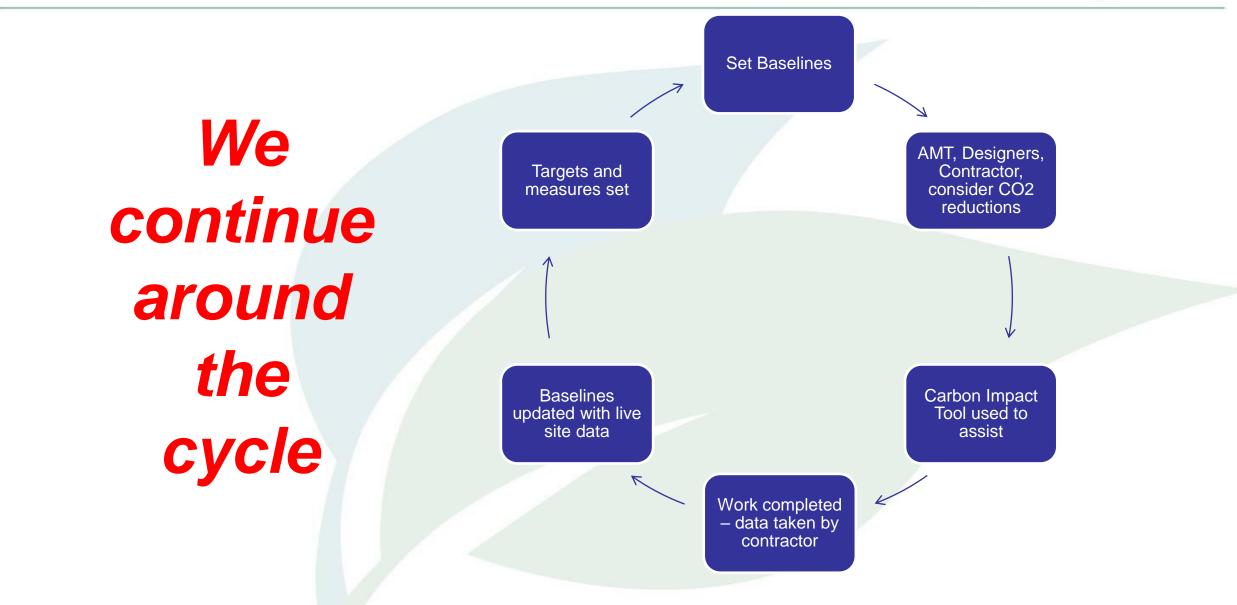
Bulk Materials

	Quantity of Materials		Transport of M	laterials	
Name of Material (overwrite as many of these as necessary)	Quantity Used (enter a number)	Amount Used Units (enter tonnes or m3)	Fuel used to transport the material to site (litres) if known	Total Distance transported to the site (miles)	Notes
Overwrite this text for Material 1					Enter the name and amount o material to the site, and the o
Overwrite this text for Material 2					Enter the same information a
Overwrite this text for Material 3					Enter the same information a
Overwrite this text for Material 4					Enter the same information a
Overwrite this text for Material 5					Enter the same information a
Overwrite this text for Material 6					Enter the same information a
Overwrite this text for Material 7					Enter the same information a

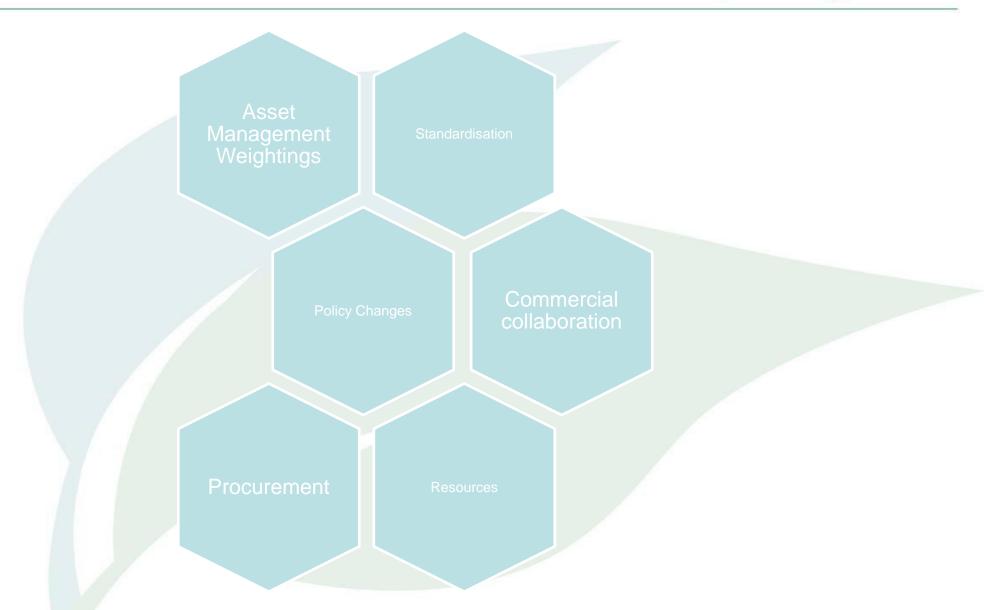

Plant

Name of Plant Item (overwrite as many of these as necessary)	Litres of fuel used on the job (enter a number)	Fuel Type (Enter Diesel or Petrol)	Fuel used to transport the plant to site (litres) if known	Distance to transport plant item to site (miles)	Notes
Overwrite this text for Plant Item 1					For each plant item enter the associated with transporting the plant was transported for
Overwrite this text for Plant Item 2					Enter the same information as
Overwrite this text for Plant Item 3					Enter the same information as
Overwrite this text for Plant Item 4					Enter the same information as
Overwrite this text for Plant Item 5					Enter the same information as
Overwrite this text for Plant Item 6					Enter the same information as
Overwrite this text for Plant Item 7					Enter the same information as

'Raw Ingredients' approach


Requires 4 elements:

- Plant list
- Materials
- Waste/recycling
 - Fuel Records


What's next.....

DCC Carbon Reduction Future Perceived Challenges

Future Highways Research Group

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Comfort Break

10 Minutes

Future Highways Research Group

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Highways

Net Zero Carbon Materials & Processes (Scope 3 Preparation)

Owen Jenkins, Director of Growth and Economy, Oxfordshire County Council David Ogden, Operations Director UK Contracting, Colas Limited

Collaboration & Knowledge Sharing

- Owen Jenkins, Director of Place, Oxfordshire County Council.
- David Ogden, Operations Director, Colas.
- Background
 - David and Owen are proposing a research project to prioritise the activities encompassed within Scope 3 so as to focus on the factors that will deliver the most significant carbon reductions.
- Aligns with our research programme:
 - Scope 3: Highways Sector Guidance Development
 - Specifically, materials and operational processes.
 - Zero Carbon Research Programme

SCOPE 3 PREPARATION

A DECADE OF ACTION

TO PRESERVE THE PLANET

Scope

Scope 3

>80%

Covers direct emissions from owned or controlled sources.Fuel combustionCompany vehicles

Fugitive emissions

Covers indirect emissions from the generation of purchased electricity, steam, heating and cooling consumed by the reporting company or authority: • Purchased electricity, heat and steam

Includes all other indirect emissions that occur in a company's value chain Down Stream Sources:

Investments & Franchises

Leased assets

- Transport, Logistics & Distribution
- Processing of sold products & End-of-life treatment of products
- **Upstream Sources:**
- Purchased goods, Capital Goods and services
- Fuel & Energy
- Transport, Logistics & Distribution
- Business Travel & Employee Commuting
- Waste from operations
- Leased Assets

Faced with the climate emergency, collaboration and innovation is essential for the Highways Sector.

OVERVIEW

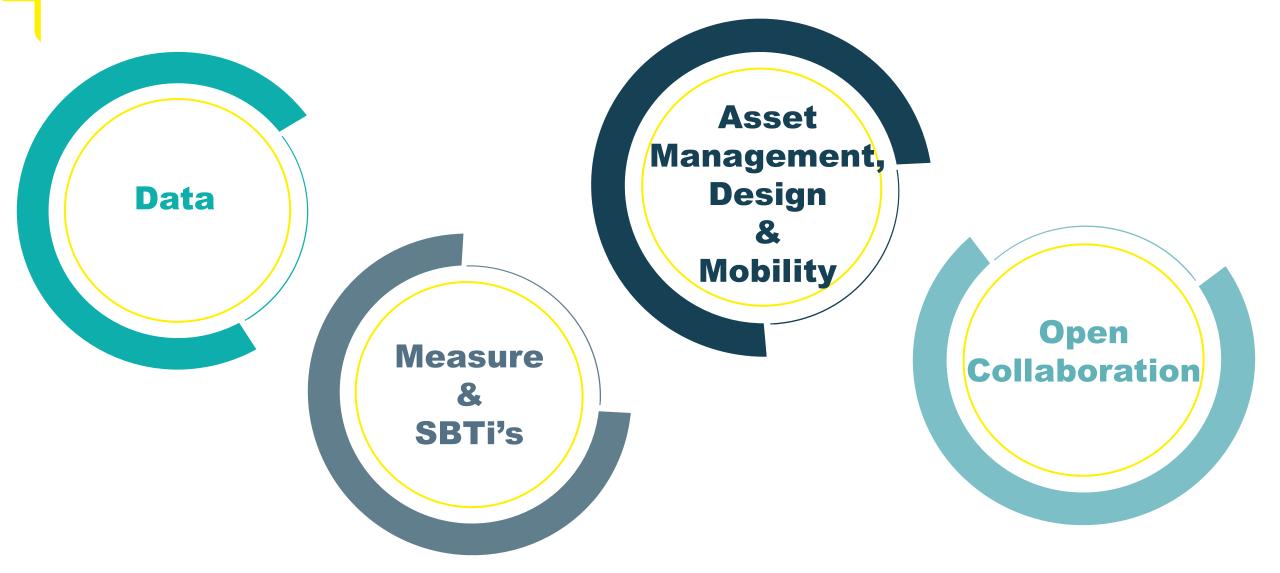
Most businesses believe that at least 80% of their total emissions footprint falls within Scope 3

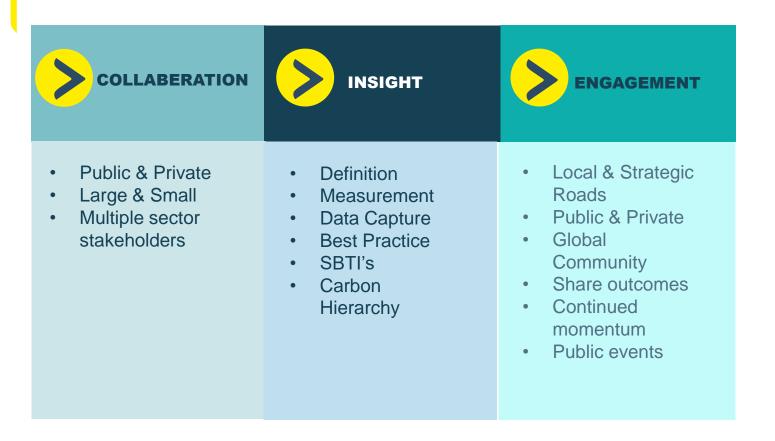
CDP has calculated that the average company's supply chain emissions are around five-and-a-half times greater than those generated by their direct operations

Ambitious and collaborative action is required to tackle scope 3 emissions the UK Highways sector

Decade of action is needed to achieve nett zero emissions in line with existing commitments or even the 2050 deadline recommended by the IPCC

RESEARCH PROPOSAL


CONSIDERING THE DESIGN, OPERATIONS AND MATERIALS FOR HIGHWAY WORK, WHAT ARE THE PRIORITIES FOR SCOPE 3 TO ACHIEVE NETT ZERO IN THE UK HIGHWAYS SECTOR.


RESEARCH CONSIDERATIONS

FHRG July 2021

63

RESEARCH RATIONALE

OUTPUT: POSITIONING PAPER TO INFORM & STIMULATE THE INDUSTRY INTO ACTION ON SCOPE 3

64 FHRG JUKY 211

KEY QUESTIONS FOR THE RESEARCH

- What is the current level of understanding of the data capture requirements of Scope 3 within the UK Highways Sector ?
- How are Scope 3 emissions in the Highways Sector being measured currently inside & outside of the UK?
- What steps is the Sector taking to ensure SBTI's are being developed, can we learn from outside of the UK?
- What are the priorities within Scope 3 for the UK Highways Sector
- As a global sector we have developed and trialled decarbonised solutions for many years across maintenance and construction activities, but to date these options are only used sporadically, why is this ?
- Where is Carbon impact currently within the Asset Management, Design and commissioning decision hierarchy inside & outside of the UK?
- How do we break down commercial blockers to achieve full collaborative working across the sector?

POTENTIAL RESEARCH PARTNERS

- CIHT
- PIARC
- ADEPT
- FHLG
- BAA
- CECA
- LCRIG
- MPA
- RSTA
- TRIB
- HE
- HSC
- TfS
- TfW
- DfT
- Carbon Trust
- Oxford University

Future Highways Research Group

Decision Equipped.

proving ADEPT

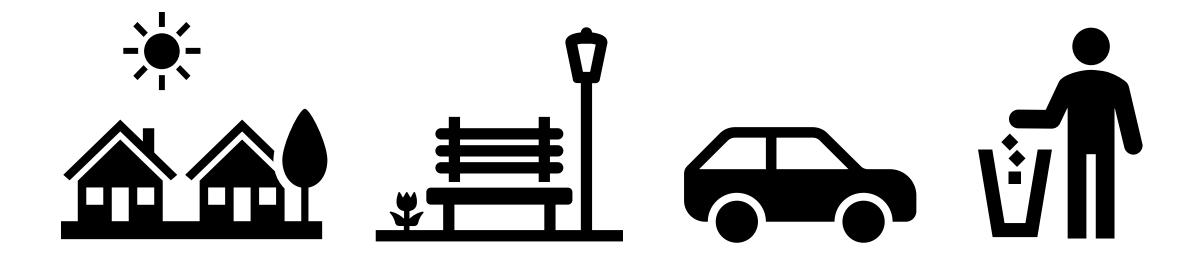
Association of Directors of Environment, Economy, Planning & Transport

StreetCare Operating Model

Jon Munslow, Place, Asset and Infrastructure Group Manager

Collaboration & Knowledge Sharing

- Jon Munslow, Asset and Infrastructure Group Manager, South Gloucestershire Council.
- Background
 - South Gloucestershire Council has evolved from a DLO to an efficient and effective mixed economy operating model (StreetCare). This approach is currently a top performing option in the Future Services Delivery assessments undertaken by Proving.
- Aligns with our research programme:
 - Future Operating Models
 - Mixed Economy Operations



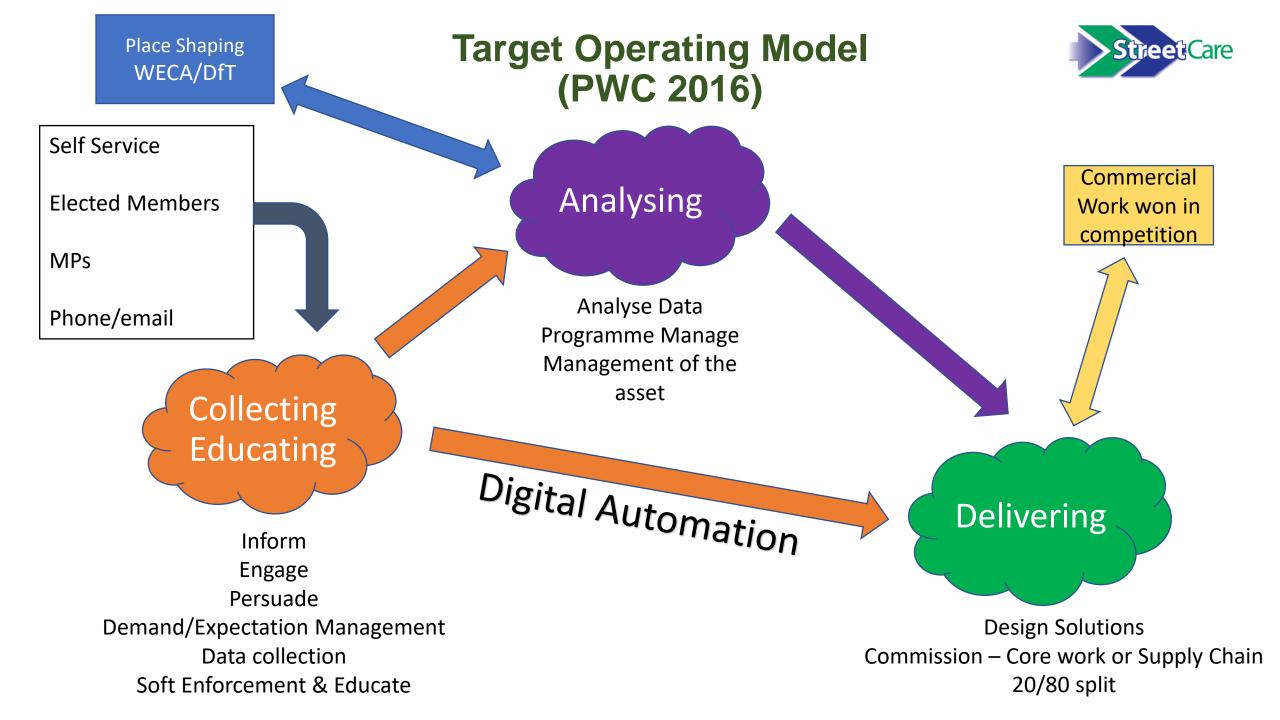
South Gloucestershire Council StreetCare Transport and Waste

Jon Munslow Place, Asset and Infrastructure Group Manager

Introduction

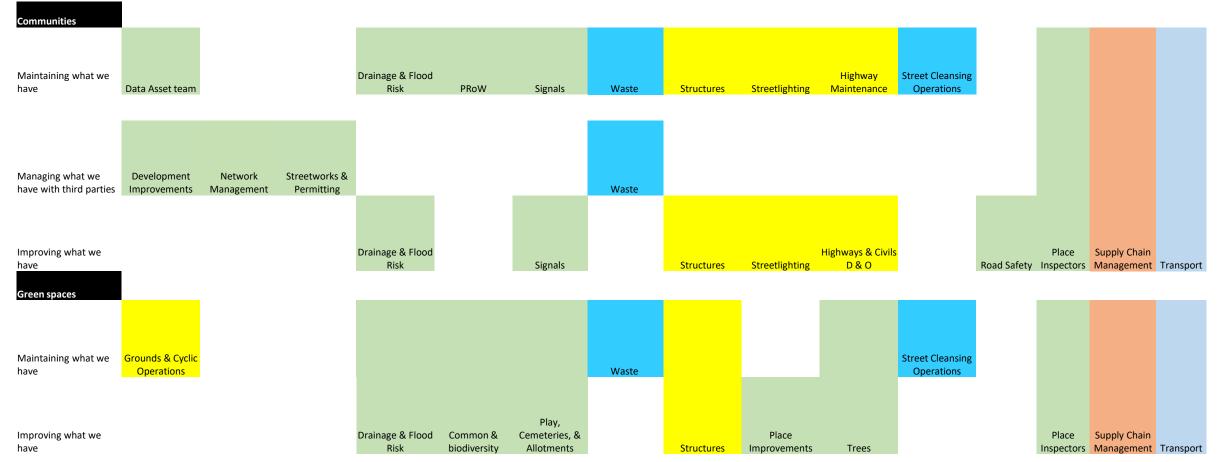
Context

Place Making and Delivery:


- Manages and protects SGC's largest assets, including:
- £4.08billion Highway Infrastructure
 - 1,600 Km of highways set to grow by 140km in the next 5 years
 - 32,000 lights and bollards
- £4.5billion Green Infrastructure
 - 12,000 pockets of open space
- £65million Waste Contracts
- **RFS** In excess of 35,000 contacts to the team a year

Highways:

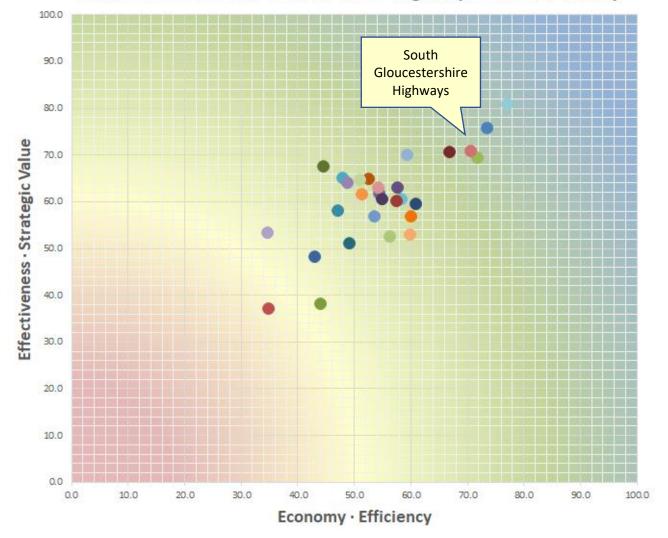
- Increase in Asset value over the last 5 years is £680M
- Asset condition is declining as we need £11million per year to stand still and only spend on average £4million.
- In last 7 years the team have secured £40million in additional capital maintenance funding (£1.5million staff has levered a return of 26:1). (sticking plaster and helped in the short term)


Open spaces and verges:

 Economic and Climate Change value- up to £4.5 billion – Well managed OpenSpaces and GI can provide a high 'monitised' value for carbon capture, water retention/ filtration, air quality and health and wellbeing benefits.

StreetCare Transport and Waste Place Making and Development

Matrix working across the section


How We Contribute to the Big Picture

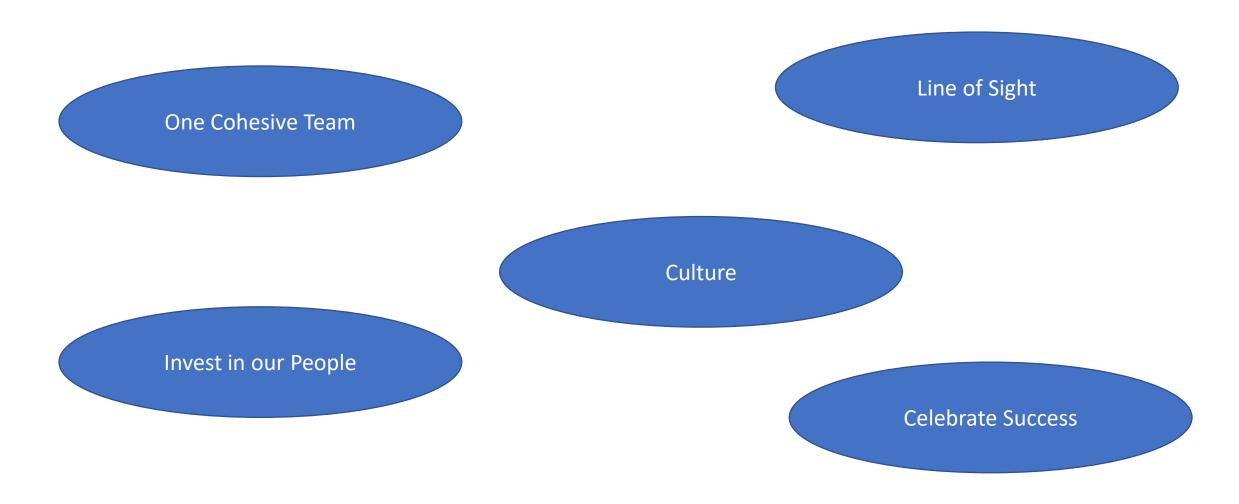
Links to Council Plan

Commitment 12	Commitment 13	Commitment 17	Commitment 18
Clean Streets and Maintain Roads Effectively	Climate Emergency	Value for Money	Generate Income from Commercial Operations
Asset Management of network, Build Community resilience Localism - Place Inspectors Community group support (volunteers' value £250k /year)	Carbon Footprint/ Offsetting GI Strategy nature recovery Tree planting Recycling Electrifying the fleet	What we do has a direct link to public perception NHT/CQC Declining asset – stretch resource to meet demand	Exceeding targets Significant contribution to corporate service through "trading" Circa £450k surplus/year

Cross Council Links

Commitment 8	Commitment 4
Prevention	Positive Mental Health for Young People
 Broken window effect - litter – graffiti - fly tips Build pride in communities Reduces demand on Safe and Strong Teams 	 Green Lung Mental health benefits Study in Sheffield found for every £1 spent on Open spaces and GI there is a £34 saving in health costs Reduces demand on Social Care and Health Service

South Gloucestershire Council 2021 · Highways Value for Money


Proving Services VfM – Benchmarked Position: FHRG members 2018 to 2020 (Performance score only)

National Highways and Transportation CQC Benchmarking

- Carriageway Maintenance is being delivered at lowest like for like cost in the peer group
- SGC is the most efficient Authority in the peer group.
- Real efficiency savings of 8.4% or £3.07million since 2014.
- Efficiency saving in 2019/20 £353,000

But what is making our difference?

Five Key Things.

One Cohesive Team

- Strong and Committed Leadership.
- Teams are empowered and trusted.
- Operations and supply chain are involved in major service discussions and decisions.
- We all meet regularly and discuss what is coming and what is happening.
- Aligning Your Drivers

Business Plan

Service Improvement Plans

ISOs and StreetCare Information Management

- ISO 9001 Quality
- ISO 14001 Environment
- ISO 55001 Asset Management

Asset Management Framework

Performance Management Framework

The StreetCare Family Brand.

Modelling the right behaviours.

Respect and support.

Seeing the Customers perspective.

Close Elected Member Relationships

Annual Training plan.

Regional Groups and National Conferences.

Apprentice Programmes.

Staff professional development.

Project Management

Big and Small.

The Voice – internal newspaper

Gritter shed get togethers.

Go for National Awards.

Include our Supply Chain Partners

StreetCare Works

Alignment

Ownership

Process

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

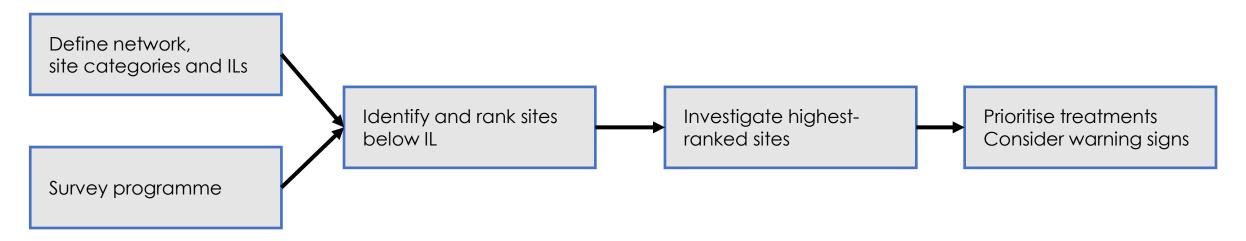
Highways

A New Methodology for Prioritising Local Authority Skid Resistance

Kully Boden, Interim Head of Service, Derby City Council Dr Helen Viner, Director, Enodamus Limited

Friday, July 16, 2021

83



A new methodology for prioritising Local Authority Skid Resistance

Motivation

We have a well-established process for managing skid-resistance:

However:

- Site categories and IL are based on the Strategic Road Network
- Lack of evidence of whether they are appropriate for local roads
- Better information could inform prioritisation and justify investment
- Necessary for risk-based management approach

The project

- DCC led an application to the Road Safety Trust
- Successful! 12-month project completed recently by XAIS and Enodamus

Objectives were to:

- Develop a simple model of the relationship between skid resistance and collision risk on local roads
- Provide evidence to justify treatments and prioritise investment

Project collaborators:

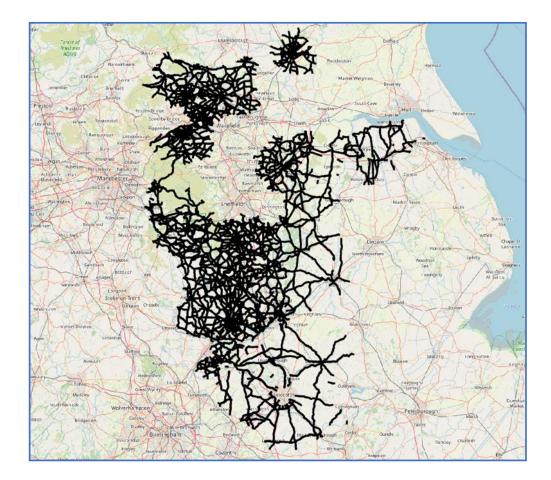
Supported by:

Doncaster Council

10

North Lincolnshire Council

2016-18* data supplied by 11 participating authorities via XAIS

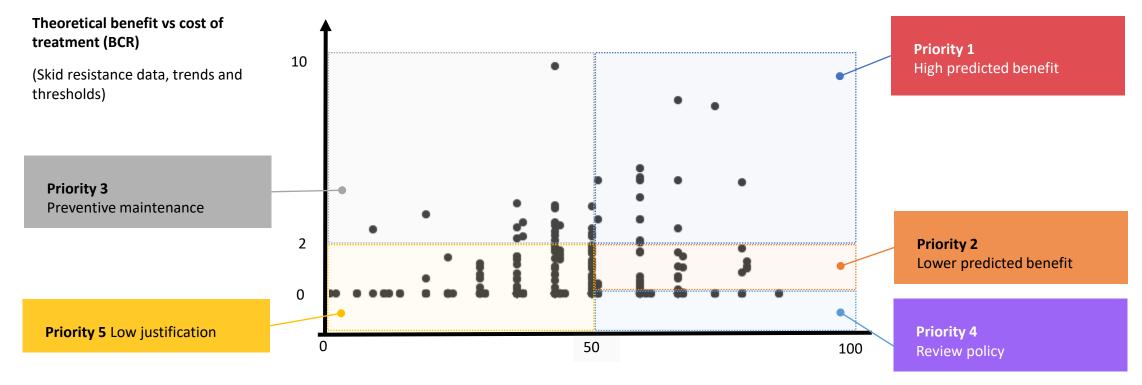

*Leicestershire 2017-2019

- 33,600 sections
- Nominally 250m
- 5000km total

- 12,000 collisions
 25% wet
- 0.8 collisions/km/year

Analysis suggests new thresholds for 4 site

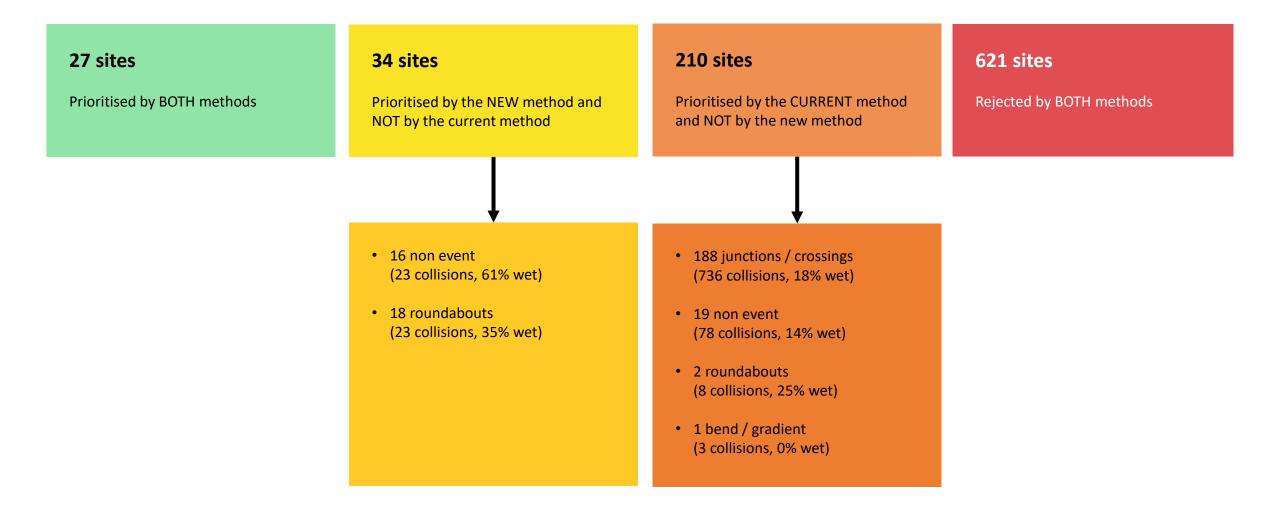
categories


		Investigatory Level at 50km/h					
Site Category	Definition	0.35	0.40	0.45	0.50	0.55	
Α	Motorway	~					
В	Non-event Dual Carriageway	~					
Bi	Increased Risk, Non-event Dual Carriageway		~				
С	Non-event Single Carriageway		~				
Ci	Increased Risk, Non-event Single Carriageway			~			
Q	Approaches to and across minor and major junctions and approaches to roundabouts			~			
Qi	Increased Risk, Approaches to junctions and roundabouts				~		
К	Approaches to pedestrian crossings, traffic lights and other high-risk situations				~		
Ki	Increased Risk, Approaches to high-risk situations					~	
R	Roundabout			~			
Ri	Increased Risk, Roundabout				~		
G1	Gradient 5-10% longer than 50m			~			
G1i	Increased Risk, Gradient 5-10% longer than 50m				~		
G2	Gradient >10% longer than 50m				~		
G2i	Increased Risk, Gradient >10% longer than 50m					~	
S1	Bend radius <500m – carriageway with one-way traffic			~			
S1i	Increased Risk, Bend radius <500m – carriageway with one-way traffic				~		
S2	Bend radius <500m – carriageway with two-way traffic				~		
S2i	Increased Risk, Bend radius <500m – carriageway with two-way traffic					~	

	Site Category	Threshold
→	Non-event	0.35
	Bend or gradient	0.40
	Junction or crossing	0.30
	Roundabout	0.50

• Significant differences compared with current table

Trends incorporated into a new approach to prioritisation


Relative likelihood of wet collisions (RL)

(Observed collision history)

Trial application - DCC 2020 SCRIM data

(892 sites - baseline 24% wet for lengths with high skid resistance)

Implications for implementation

With the changes in thresholds, the proposed approach will:

- Reduce the number of sites needing investigation
- Target treatments at the sites more likely to deliver safety benefits
 - Prioritise roundabouts
 - De-prioritise junctions, including pedestrian crossings
- Require lower skid resistance (except for roundabouts)
 - Different treatments may be possible

Based on Local Authority data

• Provides evidence to support a risk-based approach to asset management

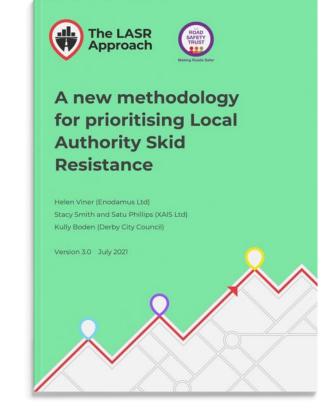
But, a significant change from current approach

• Requires a cautious approach

Next steps

Dissemination:

- Make report and methodology available
- Develop new Annex to CS 228 for local authority skid resistance


Pilot implementation:

- Treat selected sites under current and new approach
- Monitor outcomes
- Assess whether predicted benefits are achieved in practice

Expand dataset and develop existing study:

- Improve data on roundabouts
- Increase granularity of analysis, esp. different junction types
- Improve traffic data

What does it mean forAssetManagement Practitioners?

- Evidence base bespoke to our network
- Methodology easily implemented
- Supports a risk based approach as recommended in WMHI
- Reduces overhead of investigating low risk sites
- Reduces wet collisions by focusing on the most effective interventions
- Interventions fit for purpose and delivers appropriate service levels
- Use materials appropriate to maintenance hierarchy
- Helps set the right balance for spending on roads and other assets / services
- Essential when managing finite budgets

Thank You

Kully Boden Interim Head of Highways Derby City Council 07812 300030 Kully.boden@derby.gov.uk

Ian Butler Area Manager, Traffic and Transportation Derby City Council 01332 641776 Ian.butler@derby.gov.uk

Helen Viner Lead Investigator Enodamus 07368 497994 helen.viner@enodamus.com

Stacy Smith Director – Asset Management XAIS Asset Management 07852 550462 stacy.smith@xais.co.uk

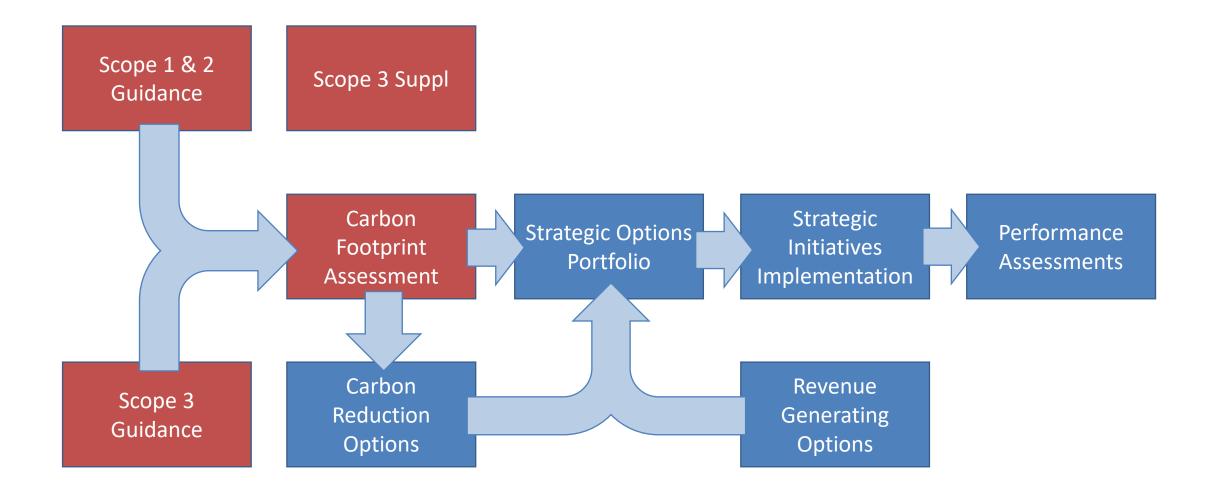
Send an enquiry via the project website <u>https://www.lasr-approach.org/</u>

Creating a new brand

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport



Strategic Portfolio: Net Zero Carbon

Simon Wilson, FHRG & Proving

Strategic Portfolio Development & Tracking Sharing Learning: Sector Innovations & Change

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Benchmarking Club

Progress Update & Early Indications Andy Perrin, FHRG & Proving

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Highways PARTOF TRANSPORT NETWORK

Preparing for COP26 & Next FHRG Workshop

Simon Wilson, FHRG & Proving

Decision Equipped.

proving ADEPT

Association of Directors of Environment, Economy, Planning & Transport

Session Close & Next Workshop

Future Highway Research Group